@0

N87-25776

A SOFTWARE TECHNOLOGY EVALUATION PROGRAM

AUTHOR: DAVID N. NOVAES-CARD

Adress to contact: Computer Sciences Corporation
8728 Colesville Road
Silver Spring, Maryland 20910
USA
Telephone (301) 589-1545

) INFORMATICA
s\u 85

23420 08 TSR0 05 1955 . FANGNS ANNINS! - 3

KEYWORDS: Software Engineering, Productivity, Reliability, Maintainability, Modern Programming Practices, Quality

Assurance, Computer Use.

INTRODUCTION

Software provides an increasingly larger part of the func-
tionality, and consequently the cost, of computer systems.
For some large applications, the cost of the software com-
ponent exceeds 75 percent of the total system cost. The
ability to deliver reliable software on time at minimum cost
has become essential to success in the computer industry.
The delayed first faunch of the Nationai Aeronautics and
Space Administration (NASA) space shuttie ciearly demon-
strated the conseguences of software failure.

Software development orqanizations. therefora. have
strong incentives to improve the software development
process, principally by adopting new technoiogy. A wealth
of potentially beneficial software engineering tools, practices,
and techniques has emerged in the past several years. Ma-
ny, nowever, have been empirically evaluated (Reference
1). Furthermore, experience shows that all software en-
gineering technologies are not appropriate for all software
development problems and environments.

The difficuity of accurately measuring the software de-
velopment process, in general, and technology use, in par-
ticular, accounts for much of the iack of objective informa-
tion in this area. This paper describes an ongoing technolo-
gy evaluation program (Reference 2) conducted by the Soft-
ware Engineering Laboratory (SEL) that is intended to resolve
these issues, atleast in part. in the context of this paper, the
term ‘‘technology’’ refers to tools, practices, and technique
applied by software developers.

Software engineering laboratory

The SEL is a research project (Reference 3) sponsored
by NASA and supported by Computer Sciences Corpora-
tion and the University of Maryland. Figure 1 shows the or-
ganization of the SEL, which was established in 1977. The
SEL studies software developed to support spacecraft flight
dynamics appiications at Goddard Space Flight Center.

The overall objective of the SEL is to understand the soft-
ware development process in the flight dynamics environment
and the identify the ways in which it can be altered to im-
prove the quality and reduce the cost of the product. The
SEL has monitored the development of more than 45 fligth
dynamics projects. In addition, the SEL conducts control-
led experiments and performs multiproject variation studies.

Flight dynamics software

The general class of spacecraft flight dynamics sofiv/are
studied by the SEL includes applications to support at::ude
determination/ control, orbit adjustment, maneuver pian-
ning, and mission analysis. The attitude ground suppert sys-
tems form a large and homogeneous group of software that
has been studied extensively. Each system inciudes a t2'em-
etry processor, data adiuster, and attitude computation sub-
systems as well as other necessary suporting functions.

Flight dynamics applications are developed in FORTRAN
on IBM mainframe comouters. Svstam sizes ranae from 30
to 150 thecusand source lines of code. The fixed spacecraft
launch date imposes a severe development time constraint.
Acceptance testing must be completed 2 months prior to
launch so that launch preparations can proceed on sched-
ule. Figure 2 describes some major characteristics of fi.jht
dynamics software.

THE PROGRAM

The SEL program of technology evaluation includes three
steps: measurement, evaluation, and transference. Meas-
urement establishes the baseline against which the ef‘zcts
of technologies can be compared. Next, technologicai in-
novations are attemped and their effects evaluated. ~ter
careful study, sucessful technoiogies are transferred to de-
velopers via guidelines, standards, and training.

Measurement

Measurement is the basic prerequisite for technoicgy
evaluation and management. Software engineering experts .
such as Boehm (Reference 4) and DeMarco (Referenc. 5)
are paying increased attention 1o the role of measuremant
in software development. The SEL developed a compreran-
sive data coliection methodology (Reference 6) as the ta-
sis for its measurement activity. Measures collected include
staffing, computer utilization, error reports, ‘and produnt
size/complexity measures, as well as the levei of technco-
gy applied to each project. The SEL employs both question-
naires and automated methods of data collection. The cai-
lected data are assembled in @ computerized data base ac-
cessible to all SEL participants.

Because the software deveiopment process is compiax
and invoives many different human and physical elemer 13,

—_— — g -

many measures are needed to characterize it adequately.

Examination of a modet of software development, such as

that shown in Figure 3, helps to define overiapping set of

measures. This madel includes the tollowing components:

— Problem — Statement of the information needs for which
a soitware solution is desired

— Personnei — Software development team, managers,
and supporting personnel

— Process — Practices, tools, and techniques employed
by the personnef to develop the product; it proceeds in
a series of steps (the software life cycle)

— Environment — Physical and informational resources and
constraints within which the personnel and process
operate

— Product — Software and documentation that solve the
problem
Measures are needed to characterize the principal attrib-

utes of these components before the relationships among

the components can be determined. A complete set of mea-
sures constitutes a profile. Software Development profiies
form the baselines against which technologies are evaluated.

Evaluation

Even after assembling a substantial software engineer-
ing data base, other obstacles to accurate technology evalu-
ation remain: technologies tend to be applied together, sam-
ple sizes are small, and many nontechnology factors also
affect the outcome of a software development project. These
complications prohibit a simplistic statistical analysisand in-
terpretation of the software development measures coliected
{Reference 4). Nevertheless, some trends in the data are
clear.

The SEL has extensively studied four factors: program-
mer performance, modern programming practices, quality
assurance, and computer utilization. Figure 4 summarizes
the results of an analysis of covariance performea with SEL
data {Reference 7). Frogrammer performance proved tc be
the most important factor with respect to both productivity
and reliability.

Figure 5 shows range of programmer productivity vaiues
encountered in the SEL data. The figure indicates that vari-
antion is lessened (or performance is homogenized) in large
projects. Figures 6, 7 and 8 plot data from 14 large attitude
projects to illustrate the effects of the other factors

Modern programming practices

One group of individual technologies, referred to as
modern programming practices, tend do be applied
together. These techologies provide a flexible methodolo-
gy for the (detailed) design, implementation, and verifica-
tion of software.

As practiced in the flight dynamics environment, the prin-
cipal components are as follows:

— Informal program design language
— Top-down development

— Structured programming

— Code reading

— Strutured FORTRAN preprocessor

The individual measures of technology use {listed above)
were combined to form a single index of overall structured
programming use. Figure 6 shows the relationship of this
index to error rate. The use of modern programming prac-
tices appears to be associated with a reduced error rate. No
significant correlation with productivity was found. This im-
plies that the reliability benefits of modern programming
practices are obtained at no additional cost in terms of de-
velopment effort.

Quality assurance

Quality assurance includes all review and management
procedures undertaken to ensure the delivery of an effec-
tive and realible product. The specific technologies studied
by the SEL are as follows:

— Requirements Reviews

— Design Reviews

— Design Walkthroughs

— Code Walkthroughs

— Test Formalism

— Test Followthrough

— Methodology Reinforcement
— Document Quality Assurance
- Development Standards

— Code Configuration Control
— Code Library (PANVALET)
— Configuration Analysis Tool

For the analysis decribed here, the individual measures
of technology use (listed previously) were combined to form
a single index of overall quality assurance activity. Figure
7 shows the relationship of this index to error rate. Quality
assurance activity appears to be associated with a reduced
error rate. No significant correlation with productivity was
found. This implies that the reliability benefits of quality as-
surance are obtained at no additional cost in terms of de-
velopment effort,

Computer utilization

Another major factor in software development is the com-
puting environment. Because changes to this environment
ucualhy cannct e made 1o cuniunm o the needs of any sin-
gle project, the computing environment is not considered
10 be a soitware engineering technology as defined in this
paper. Nevertheless, it can have a strong effect on the de-
velopment process (Reference 8). The ftight dynamics com-
puting environment provides the programmer with facilities
for editing, compiling, linking, and testing source code.

Figure 8 shows that extensive computer use is associat-
ed with low productivity. Heavy computer users may not
spend enough time desk checking and pianning their work
before jumping into code and test. However, a recent study
(Reference 9) indicated that computer support for design
and planning activities (not now provided) can increase the
overall productivity and reliability of the software deveiop-
ment process. .

Transference

When the effectiveness of a technology has been demon-
strated, the next step is to transfer it to software developers.
The principal mechanisms used by the SEL to accomplish

* technology transfer include disseminating guidelines, de-

2-3

veloping tools, and conducting specialized training. The
guidelines produced by the SEL cover management proce-
dures (Reference 10), programming practices {Reference
11), and quality assurance (Reference 12). Two important
SEL-developed tools are the Source Code Analyzer Program
(Reference 13), which has been distributed across the United
States, and the Configuration Analysis Tool (Reference 14),
which is tailored to specific flight dynamics needs. Current-
ly, SEL researchers are designing a training program for the
Ada* language (Reference 15).

* Adais aregistered trademark of the U.S. Goverment, Ada Joint Pro-
gram Office.

CONCLUSIONS

SEL experience demonstrated that the software develop-
ment process can be improved by a throughful program of
technology evaluation. Other similar organizations can aiso
apply the lessons learned by the SEL. First, the use of modern

programming practices increases software reliability without -

noticeably increasing development cost. Second, a reguiar
program of quality assurance also improves software relia-
bility at little or no net cost. Whereas many modern program-
ming concepts are firmly established in software engineer-
ing practice, formal quality assurance procedures are only
now coming into widespread use. Third, intensive computer
use appears to be associated with low productivity. Program-
mers who spend a lot of time at the terminal tend to be less
productive.
In summary, these results suggest that a formal and con-
_scientious method of software development yields a more
reliable product. On the other hand, it is very difficult to
reduce the cost of developing a software product, although
a more reliable product should require less subsequent main-
tenance. Despite technological advances, the major factor
in both productivity and reliability continues to be person-
nel capability and performance (Reference 16).

ACKNOWLEDGMENT

The author would like to recognize the central roles of
F. E. McGarry (National Aeronautics and Space Adminis-
tration), G. T. Page (Computer Sciences Corporation), and
V. R. Basili {University of Maryland) in planning and perfor-

REFERENCES

1. B. A. Sheil, *“The Psychological Study of Program-
ming,’” ACM Computing Surveys, March 1981.

2. D.N. Card, F. E. McGarry, G. T. Page, et al., Measur-
ing and Evaluating Software Technology, NASAJ/GSFC,
under development.

3. D.N.Card, F. E. McGarry, G. T. Page, etal., The Soft-
ware Engineering Laboratory, National Aeronautics and

10.

11.
12
13.

14

15.

16.

Space Administration/Goddard Space Flight Center
(NASA/GSFC), SEL-81-104, February 1982,

. B. W. Boehm, Software Engineering Economics. En-

glewood Ciiffs: Prentice-Hall 1981.

. T. DeMarco, Controlling Software Projects. New York:

Yourdon Press, 1982.

. V. E. Church, D. N. Card, F. E. McGarry, et al., Guide

to Data Collection, NASA/GSFC, SEL-81-101, August
1982.

. D. N. Card, F. E. McGarry, and G. T. Page, *'Evaluat-

ing Software Engineering Technologies,’* Proceedings
of the Eighth Annual Software Engineering Workshop,
NASA/GSFC, SEL-83-007, November 1983.

. F.E. McGarry, J. D. Valett, and D. L. Hall, “"Measuring

the Impact of Computer Resource Quality on the Soft-
ware Development Process and Product,’” Collected
Software Engineering Papers: Volume 3, NASAIGSFC,
under development

. K. Koerner, R. Mital, D. N. Card, and A. Maione, ‘‘An

Evaluation of Programmer/Analyst Worksta-
tions, "' Proceedings of the Ninth Annual Software En-
gineering Workshop’’, NASA/GSFC, SEL-84-004,
November 1984.

W. W. Agresti, F. E. McGarry, D. N. Card, et al.,
Manager’s Handbook for Software Development, NA-
SA/GSFC, SEL-81-205, April 1984,

‘W. 4. Decker, Programmer’s Guide, NASAIGSFC, un-

der development,

Q. L. Jordan.Product Assurance, NASA/GSFC, under
development.

W. J. Decker and W. A. Taylor, FORTRAN Static
Source Code Analyzer Program User’s Guide, NA-
SAIGSFC, SEL-72-207, Areil 1988

W. J. Deckerand W. A. Taylor, Configuration Analysis
Tool System Description and User’s Guide, NA-
SA/GSFC, SEL-80-104, December 1982.

V. R. Basiii, ""Analysis of Software Development in
Ada’’, Proceedings of the Ninth Annual Software En-
gineering Workshop, NASA/GSFC, SEL-84-004,
November 1984.

F. E. McGarry, ‘‘Measuring Software Technology'’
Proceedings of the Seventh Annual Software Engineer-
ing Workshop, NASA/GSFC, SEL-82-007, December
1982.

AND SPACS
ADMINISTRATION
L 3 -~
L d s ~ ~
P ~
’ ~
-7 >~
e Na
UNIVERSITY
SEL { oF .
DATA BASE MARYLAND
SOFTWARE NASA/CSC FLGHT
OYNAMICS PROJECTS

DEVELOP-
MENT

FIGURE 1 — Software Engineering Laboratory

TYPE OF SCIENTIFIC, GROUND-BASED, INTERACTIVE GRAPHIC, ‘
SOFTWARE: MODERATE REUABILITY AND RESPONSE REQUIREMENTS

LANGUAGES: 85% FORTRAN, 15% ASSEMBLER MACROS
COMPUTERS: IBM MAINFRAMES, BATCH WITH TSO

PROJECT CHARACTERISTICS: AVERAGE HIGH LOowW

DURATION (MONTHS) 16 Fq 3
EFFORT (STAFF-YEARS)] 4 2
(1000 LOC)
DEVELOPED 87 142 2
DELIVERED 6 15 3
STAFF (FULL-TIME
EQUIVALENT)
AVERAGE : 8 1
PEAK 10 24 4
INDIVIDUALS 14 2
APPLICATION EXPERIENCE
(YEARS)
MANAGERS] 7 5
TECHNICAL STAFF 4 s 3
OVERALL EXPERIENCE
(YEARS)
MANAGERS 10 14]
TECHNICAL STAFF 9 1 7

FIGURE 2 — Flight Dynamics Software

ENVINONMENT
PERSONNEL
PROBLEM »{ PRocEss ${ PRODUCT
L——/‘L
s
’ ~
L Y
’ \\
g N
V4 s N ~
4 N
’ N
4 ~
P A
’ \
’ AN
’ S
v AN
Y \\
’ LS
/ PROCESS PHASES >

ANALYSIS DESIGN DESIGN Tion TEsT

REQUIASMENTS | PRELIMINARY | DETAILED | IMPLEMENTA-| SYSTEM ACC?:T,:NCI MAINTENANCE

FIGURE 3 — Software Development Model

PERCENT OF VARIANCE
EXPLAINED BY FACTOR?®

TECHNOLOGY FACTOR PRODUCTIVITY RELIABILITY
PROGRAMMER PERFORMANCE 2 48
MODERN PROGRAMMING b 10
PRACTICES
QUALITY ASSURANCE b 10

COMPUTER UTILIZATION 2 b

&VALUES FROM REFERENCE 7.
bNO SIGNIFICANT CONTRIBUTION,

FIGURL 4 — Technology Evaluations Summary

| 7
e Y2

NOTES: LARGE PROJECTS ARE GREATER THAN 20,000 SOURCE LINES OF CODE,
PRODUCTIVITY IS SOURCE LINES PER STAFF HOUR.

FIGURE 5 — Programmer Productivity Variations

2-6

9000 ¢

(X 4

4.008

ERROA RATE

.02

L78 42 W L

1.7

10.23

18.78

MODEAN PROGRAMMING PRACTICES

NOTES: ERRON NATE IS ERROAS PER DEVELOPED SOUACE LINE OF CODE.
MOOIRN PROGRAMMING PRACTICES IS INDEX COMBINING $IX

MEASURES.

FIGURE6 — Effectof Modern Programming Practices

18

t

EAROR RATE

LX)

6.000

0.008

.08

.om

o

_—

A [B i 1 1

] ©
ASSURANCE

» L]
QUALITY

NOTES: ERAOA AATE 19 ERAORS PIN DEVELOPED SOUACE LINE OF COOR,
QUAUITY ASSUAANCGE 18 INDEX COMBINING 12 MEASUNES.

FIGURE 7 — Effect of Quality Assurance

-
e
L .
~\
-
L ~
~
~ [}
~
-~
- ~
3 \.
. S
. [N
.
. -
. o ~
.
3
a i " N - N N
6053 0008 0000 0.1 088 0018 Q.03
COMPUTERA USE

NOTES: PRODUCTIVITY 13 OEVELOPED SOURCE LiNES OF CODE PER HOUR.
COMPUTER USE IS COMPUTER HOURS PER DEVELOPED SOURCE LINL.

FIGURE 8 — Effect of Computer Use

